

The U.S. Army Research Laboratory Dynamic

Terrain Server

by Mark A. Thomas

ARL-TR-2962 April 2003

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2962 April 2003

The U.S. Army Research Laboratory Dynamic
Terrain Server

Mark A. Thomas

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

INTENTIONALLY LEFT BLANK.

 iii

Contents

Acknowledgments iv

1. Introduction 1

2. Capabilities 1

3. Architecture 2
3.1 Network Interface Unit..3

3.2 Munitions Effects Module...3

3.3 Set Data PDU Breach Subtract PDU...3

3.4 Breach Polygon Number Set Data PDU..6

3.5 Ding Information Set Data PDU ...7

4. DTServer GUI 8

5. Runtime Considerations 9
5.1 Terrain Database..9

5.2 Object Database...9

5.3 Munitions Database...11

5.4 Run Script..12

6. Results 13

7. Conclusion 14

Bibliography 15

Report Documentation Page 16

 iv

Acknowledgments

The author would like to acknowledge the participation of the following individuals: Ms. Pat
Jones, U.S. Army Research Laboratory (ARL), for managerial support; Mr. Andrew Neiderer
and Mr. Charles Hansen, ARL, for coding and algorithm development; Mr. James Grosse and
Mr. Brian Comer, Program Executive Office for Simulation, Training, and Instrumentation, for
their support in funding the integration of the Dynamic Terrain Server (DTServer) with the
Soldier Visualization System; and Dr. Bruce Knerr and Dr. Steve Goldberg, U.S. Army Research
Institute for the Behavioral Sciences, for funding integration of the DTServer with the After-
Action Review system developed by the Institute for Simulation and Technology.

 1

1. Introduction

The U.S. Army Research Laboratory (ARL) is conducting research in methods to compute and
distribute dynamic terrain information in real-time distributed simulation. The purpose is to
populate virtual environments with real-world dynamic terrain and objects such as rubble and
debris, dings, and breaches of structures. Dismounted infantry simulation requires these
obstacles and capabilities for room-clearing operations, urban terrain warfare, and situational
awareness.

The ARL Dynamic Terrain Server (DTServer) provides this capability. The DTServer computes
effects on structures from munitions detonations and collisions. The server transmits the results
to client simulations on the network and updates the status of rubble entities. The result of using
the DTServer is a unified terrain database across all simulators ensuring fair-fight, realism, and
training effectiveness. This report will describe the DTServer capabilities, architecture, and
run-time considerations.

2. Capabilities

The DTServer computes effects on structures using table look-up and empirical formulas. The
DTServer contains a munitions effects table which has data for relevant munitions such as the
9-mm bullet, 50-cal. munition, AT8 munition, and artillery. These munitions all create some
effect on structures. A 9-mm impact on a concrete structure will leave a mark, or ding, on a
concrete wall. This mark is not significant for structural mechanics but is significant to
dismounted combatants for situational awareness and survivability. An AT8 blast, however, will
completely breach a wall, affording access for room-clearing operations. The DTServer
computes these effects and distributes them to compliant simulations across the network.

The DTServer transmits dynamic changes using distributed interactive simulation (DIS) protocol
data units (PDU). The DIS Set Data PDU is used to transmit data to client simulations for
breaches and dings. The Set Data PDUs sent by the DTServer are the Breach Subtract, Breach
Vertices, and Ding messages.

Rubble is treated as an entity. This is a compatibility issue with the Dismounted Infantry Semi-
Automated Forces (DISAF) program. The DISAF program requires geometry to be continuous.
The breaching function cannot guarantee continuity with the rubble field computed. Therefore,
each piece of rubble is transmitted to the simulators as an entity. The Entity State PDU transmits
rubble state to client applications. The DTServer computes the rubble field and transmits a PDU

 2

for each piece of rubble. The DTServer then sends a heartbeat for each piece of rubble to keep it
active in the simulation.

The DTServer can log and replay events. Logged events can be replayed to provide an after-
action capability or to predamage a database using data from a previous run.

The DTServer includes a graphical user interface (GUI) to view the database. The DTServer
display is shown in Figure 1.

Figure 1. DTServer display showing Fort Polk database.

3. Architecture

The DTServer is comprised of a network interface unit (NIU), a munitions effects module
(MEM), and a GUI.

 3

3.1 Network Interface Unit

The NIU handles DIS communications for the DTServer. The DTServer reads the DIS
Detonation PDU network packet. The Detonation PDU contains the information required for the
munitions effects module. This information includes the point of detonation, the munition
description, and the velocity vector. When a Detonation PDU is received by the NIU, it is sent
to the munitions effects module.

The NIU requires two values at program initialization, the DIS port and exercise identifier.
These values are entered by the user at program start-up.

3.2 Munitions Effects Module

The MEM computes the effect of the detonation on the impacted object. The MEM contains a
database of munitions properties, terrain objects (buildings, bridges, other man-made objects),
and ground terrain. The MEM parses the munition type, velocity vector, and detonation location
from the Detonation PDU. If the detonation location does not impact a terrain object, the MEM
does nothing. If a terrain object is impacted, the effect is computed. The computation is a
simple mathematical relation between hole size and the mass of trinitrotoluene (TNT) in the
projectile: d = mp1/3, where d = diameter and mp = mass of TNT.

This relation was derived from a need to compute holes of different sizes from different
munitions. The formula can be replaced by physics-based models which factor in projectile
impact speed, direction, and wall properties. The effects computation returns two values—a
breach flag and a size. If the breach flag is true, the size is the radius of the breach. If the breach
flag is false, the size is the size of the ding.

If a breach occurs, the geometry engine is called to compute the new geometry. The new
geometry consists of the new polygons which make up the new wall. When this computation is
completed, the NIU is called to transmit the Set Data PDU Breach Subtract PDU and the set data
polygon information. In addition, Entity State PDUs are transmitted for the resulting rubble.

If the breach flag is false, a ding is the result. The size is the radius of the ding. A Set Data PDU
ding packet is formatted and sent to clients.

3.3 Set Data PDU Breach Subtract PDU

The Set Data PDU Breach Subtract PDU includes the necessary information for clients to initiate
a breach. The PDU data packet includes breach location in round world coordinates, the surface
normal in local coordinates, the name of the texture of the impacted polygon, and the number of
polygons to follow. The following code fragment shows the construction of the Breach Subtract
Set Data PDU:

 4

typedef struct FixedDatumRecord{

 Unint32 id;

 Unint32 value;

}

typedef struct BreachRecord{

 Unint 32 id;

 Unint32 length;

 Float64 value[8];

}

typedef struct VertexRecord{

 Unint32 id;

 Unint32 length;

 Float64 value[5];

}

typedef struct DingRecord{

 Unint32 id;

 Unint32 length;

 Float64 value[5];

}

BreachRecord *v = (BreachRecord *)setdatapdu->variableDatum;

FixedDatumRecord *f = (FixedDatumRecord *)setdatapdu->fixedDatum;

 5

setdatapdu->originating_entity_id.entity_id = EntityID;

setdatapdu->receiving_entity_id.address.site = 65535;

setdatapdu->receiving_entity_id.address.application = 65535;

setdatapdu->receiving_entity_id.entity_id = 65535;

setdatapdu->request_id = breach_number;

setdatapdu->number_of_fixed_datum_records = 34;

setdatapdu->number_of_variable_datum_records = 1;

f[0].id = BREACH_SUBTRACT_INFORMATION;

f[0].value = number_of_polygons;

f[1].id = BREACH_TEXTURE_INFORMATION;

f[1].value = strlen(texture);

for(int I = 0; I < 32; I++){

 f[I+2].id = BREACH_TEXTURE_INFORMATION + I + 1;

 f[I+2].value = texture[I];

}

v->id = BREACH_SUBTRACT_INFORMATION;

v->length = 512;

v->value[0] = world X location of breach;

v->value[1] = world Y location of breach;

v->value[2] = world Z location of breach;

v->value[3] = surface normal X;

 6

v->value[4] = surface normal Y;

v->value[5] = surface normal Z;

v->value[6] = major_axis_length in meters;

v->value[7] = minor_axis_length in meters;

3.4 Breach Polygon Number Set Data PDU

The Breach Polygon Number Set Data PDU contains the polygon information. Clients will store
the polygon data in the arrays allocated after arrival of the Breach Subtract Set Data PDU. The
Breach Polygon Number Set Data PDU contains the number of the polygon from zero to N, the
round world coordinates of the vertex, and the texture coordinates. The following code fragment
shows the construction of the data packet:

FixedDatumRecord *f = (FixedDatumRecord *)setdatapdu->fixedDatum;

VertexRecord *v = (VertexRecord *)setdatapdu->variableDatum;

setdatapdu->originating_entity_id.entity_id = EntityID;

setdatapdu->receiving_entity_id.address.site = 65535;

setdatapdu->receiving_entity_id.address.application = 65535;

setdatapdu->receiving_entity_id.entity_id = 65535;

setdatapdu->request_id = Breach_ID;

setdatapdu->number_of_fixed_datum_records = 1;

f->id = BREACH_POLYGON_NUMBER;

f->value = Polygon Number [0 – N]

setdatapdu->number_of_variable_datum_records = 3;

 7

v[I]->id = BREACH_POLYGON_INFORMATION;

v[I]->length = 320;

v[I]->value[0] = world X location;

v[I]->value[1] = world Y location;

v[I]->value[2] = world Z location;

v[I]->value[3] = texture u coordinate;

v[I]->value[4] = texture v coordinate;

The information in the PDU is independent triangles. Each triangle is described by its
coordinates (vertices) and texture values. Using this data, the receiving simulator culls out the
impacted wall from the scene and replaces it with the triangles received from the network. The
receiving simulator can extract color information for the new triangles from the impacted
triangle. In the future, color information should be included in the Set Data PDU, with a
corresponding decrease in network response.

3.5 Ding Information Set Data PDU

The ding data packet contains the necessary data to display a ding resulting from a small-arms
impact on a terrain object. The following code fragment shows the Ding Set Data PDU:

FixedDatumRecord *f = (FixedDatumRecord *)setdatapdu->fixedDatum;

DingRecord *d = (DingRecord *)setdatapdu->variableDatum;

setdatapdu->originating_entity_id.entity_id = EntityID;

setdatapdu->receiving_entity_id.address.site = 65535;

setdatapdu->receiving_entity_id.address.application = 65535;

setdatapdu->receiving_entity_id.entity_id = 65535;

setdatapdu->request_id = DING_ID;

setdatapdu->number_of_fixed_datum_records = 1;

setdatapdu->number_of_variable_datum_records = 1;

 8

d->id = DING_ID;

d->length = 320;

d->value[0] = world X location;

d->value[1] = world Y location;

d->value[2] = world Z location;

d->value[3] = angle in X/Y plane;

d->value[4] = size in meters;

4. DTServer GUI

The DTServer GUI provides a visual check on the state of the database. Breaches and rubble are
displayed. The GUI is a three-dimensional display of the terrain, and the viewer can fly around
the terrain using keyboard commands. The GUI may be turned off to increase system response
on computers with slow graphics hardware. The GUI also allows the user to fire munitions at
walls to create damage in a stand-alone mode. The user can select the weapon to be fired, aim at
a wall, and fire the weapon. The effect is calculated, and the appropriate Set Data PDU is
transmitted. This capability is useful when inserting new munitions into the database or testing
client program compatibility.

The arrow keys provide steering and speed control. The up and down arrows speed up and slow
down forward and reverse motion. The left and right arrow keys turn the view left and right.
The F11 and F12 keys raise and lower the eyepoint. The H key turns the GUI drawing off. This
will greatly improve DTServer processing speed on slower machines. The L key will turn on
logging. The logger will store all received detonation events that result in a breach or ding. The
events are stored in a file, DTlog.dat in the current working directory, and can be replayed with
the R command. This allows the DTServer to store simulation runs for playback later or to
predamage a database using data from an earlier run.

The space bar fires the current munition. The munition is fired at the center of the screen. The
user selects the weapon with the S key.

 9

5. Runtime Considerations

The DTServer requires three databases in order to run—the terrain database, the object database,
and the munitions database. The following sections describe these databases and give an
example of a run script for the DTServer.

5.1 Terrain Database

The terrain database is used for ground clamping rubble. The terrain database is loaded using the
following –t command line option: dtserver –t ftpolk_terrain.flt. Multiple terrain databases may
be loaded, each with the –t flag.

5.2 Object Database

The DTServer can function on an entire database (with the –t runtime option) or on specific
objects within a database. The presence of the file scene.cfg will determine specific objects or
whether the entire database is processed.

The scene.cfg file is a user-created datafile of object names. The object names may be file
names or display list names. For example, buildingL.flt will load in the OpenFlight file named
buildingL.flt and will add it to the list of processed objects. In addition, node3 will search the
database for a node named node3 and add it to the list of processed objects.

The DTServer creates a file called nodenames.dat when executed. A node is a graphics object in
the scene graph of the graphical database. A node can have a name; such named nodes are of
interest. This file lists the names of all named nodes in a database. The user then selects the
objects to be processed from this list and adds them to the scene.cfg file. This is a trial and error
process and is prone to error; hence, caution is advised.

The scene.cfg file is of the following format:

staticNodes

{

Xbld1G

Xbld2C

Xbld1G

Xbld4H

 10

Xbld5F

Xbld6EE

Xbld6EE

Xbld10H

Q1room

Xbld11HH

Xbld12HH

Xbld13B

Xbld14H

Xbld15H

Xbld16H

Xbld17HH

Xbld18H

Xwatertower

Xbld20H

Xbld21AA

Xbld22B

Xbld23A

Xbld6EE

Xbld25E

Xbld26D

Xbld6EE

Xbld6EE

Xhbuilding

}

terrainNodes

 11

{

tGround

}

The staticNodes keyword lists the nodes which will be processed for detonations. Using the
UNIX* system grep command, the node names are extracted from the nodenames.dat file created
by the DTServer. The grep pfGroup command will print out all named groups in the scene
graph. These nodes will be the only nodes which will be processed for breaches. The
terrainNodes keyword lists nodes which will be processed as terrain. Terrain is not breached but
can show dings for ground impacts. This is useful when showing history of ground impacts and
residue of smoke munitions.

In addition, the scene.cfg file may contain file names. The corresponding keywords would be
staticFiles and terrainFiles.

5.3 Munitions Database

For the munitions effects models, the munitions file contains information required such as the
name, DIS enumeration, the equivalent weight of TNT, burst radius, mass, warhead diameter,
fuze, and muzzle velocity. The file format is as follows:

Start{

 Name: Redeye

 Kind: 3

 Domain: 1

 Country: 225

 Category: 1

 SubCategory: 1

 EqWtTNT: 5.00

 BurstRadius: 10.00

 SmokeType: 1

* Unix is a registered trademark of The Open Group.

 12

 Mass: 0.50

 Diameter: 0.25

 Warhead: 0.00

 Fuze: 0.00

 Muzzle Velocity: 0.00

}

.

.

.

The current values in the munitions file are derived from open-source literature.

5.4 Run Script

The DTServer is best run from a shell script. The following shell script correctly sets up all
environmental variables and executes the DTServer:

#!/bin/csh

setenv DISIMDEV_ROOT /home/disim

setenv PFPATH $DISIMDEV_ROOT/texture:$DISIMDEV_ROOT/FTPOLK/textures

setenv LD_LIBRARY_PATH “/usr/X11R6/LessTif/Motif2.0/lib”

hole_server –p 1313 –e 10 –r 20 –t /home/disim/FTPOLK/models/terrain.smf925b.flt

-b ftpolk.dat –l 488360.0 3440792.0 15

This command executes the DTServer with the following settings:

 13

-p 1313 : The DIS UPD port to communicate on

-e 10 : The DIS Exercise ID is set to 10

-r 20 : The rubble heartbeat is set to 20

-t /home/disim/FTPOLK/models/terrain.smf925b.flt : The ground terrain database file

-b ftpolk.dat : The terrain objects are read from the file ftpolk.dat

-l 488360.0 3440792.0 15 : The terrain map lower left easting and northing offsets and gridzone

6. Results

The DTServer was used in the Culminating Event for the Virtual Environments for Dismounted
Soldier Simulation, Training, and Mission Rehearsal Science and Technology Objective at
Ft. Benning, GA, in September 2002. The DTServer was used with the Fort Polk/Shugartt-
Gordon database to provide dings and breaches.

The DTServer for this exercise was required to breach walls with the C4 explosive. One
problem with the C4 was the lack of a velocity vector. The breaching algorithm used the
velocity vector to compute the shape of the hole. The lack of a velocity vector caused the
algorithm to abort. This was fixed by adding a velocity vector normal to the wall. Another issue
for the Culminating Event was data dropouts. Due to the unreliable user datagram protocol
message-passing protocol of the DIS standard, these dropouts caused the DTServer to not get a
detonation, therefore not computing a breach. In this instance, the soldiers in the evaluation had
to redo the C4 charge emplacement. Another case was more serious. This involved the situation
where some soldier simulators received the Breach Subtract Set Data PDU and others did not. In
this case, some simulators displayed the breach properly and some did not. This resulted in
inconsistent databases on the network, which negatively impacted the training exercise. Using a
reliable network protocol such as the High-Level Architecture would fix these problems.

Most simulation runs were successful. The soldiers in the training exercise used the ding
mechanism as tracers and markers. Sniper location was marked by shooting at the wall outside
the hide position, and breaching was utilized by the soldiers in accordance with doctrine for
room clearing.

Another issue for the DTServer concerned the terrain database. The DTServer processes objects
in the database for which it is programmed, namely buildings and the ground. Entities are
ignored in the DTServer at this time. The scenarios in the Culminating Event contained entities
for furniture and other building objects controlled by the semiautomated forces software, DISAF.

 14

In one instance, the soldiers breached a wall only to find a Coca-Cola* machine in the way. In
the real world, blast overpressure may have knocked the Coca-Cola machine down, or a large
munition may have blown it up. These secondary effects need to be included in any future
system for MOUT (military operations in urban terrain) simulations.

7. Conclusion

The DTServer provides real-time damage effects to distributed simulations. The DTServer has
been interfaced to the Soldier Visualization System by “Reality By Design,” the after-action
review system by the Institute for Simulation and Training, and the ARL DIS. The DTServer
provides logging and playback functionality for after-action review or predamaging a database
from a previous run.

Future work will include upgrading to the High-Level Architecture, providing updates to late-
arriving clients, and additional real-time munitions effects such as terrain cratering and effects on
entities.

The mobility, line-of-sight, and obstacle creation provided by the DTServer can be applied to all
high-resolution ground level entities such as robots, areal sensors, and unmanned ground
vehicles.

* Coca-Cola is a registered trademark of the Coca-Cola Company.

 15

Bibliography

Neiderer, A. M.; Thomas, M. A.; Pearson, R. A Fracturing of Polygonal Object; ARL-TR-1649,
U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, April 1998.

Neiderer, A. M.; Hanson, C. E. Distribution of Fragments Resulting From Polygonal Object
Fracture; ARL-TN-182, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD,
September 2001.

Institute for Electrical and Electronic Engineers. Standard for Distributed Interactive Simulation
– Application Protocols; DIS-4 Version 2.0, 4th draft (superseded by IEEE 1278.1); Institute
for Simulation and Training: Orlando, FL, 4 February 1994.

 16

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

April 2003
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

30 September 2001–30 September 2002
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

The U.S. Army Research Laboratory Dynamic Terrain Server

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

P622783.Y103TEDNC
5e. TASK NUMBER

6. AUTHOR(S)

Mark A. Thomas

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-CT
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-2962

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army Research Laboratory is conducting research in methods to compute and distribute dynamic terrain information
in real-time distributed simulation. The purpose is to populate virtual environments with real-world dynamic terrain and objects
such as rubble and debris, dings, and breaches of structures. This project is part of a science and technology objective to
develop simulation capabilities for training dismounted soldiers using virtual simulation. This research resulted in the
development of a dynamic terrain server, DTServer. DTServer computes results of battlefield munitions impacts on structures
then transmits the results to receiving other simulations on the network using distributed interactive simulation protocol data
units. Results of DTServer use in a dismounted infantry exercise at Ft. Benning, GA, demonstrate the utility of the tool. This
report will describe the DTServer software and results of the dismounted infantry exercise.

15. SUBJECT TERMS

dynamic terrain, modeling and simulation, MOUT, distributed interactive simulation, High-Level Architecture

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Mark Thomas

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

22 19b. TELEPHONE NUMBER (Include area code)

(410) 278-5011
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 1

 2 DEFENSE TECHNICAL
 INFORMATION CENTER
 DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218

 1 COMMANDING GENERAL
 US ARMY MATERIEL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL D
 DR D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS IS R
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 2 DIR USARL
 AMSRL CI LP (BLDG 305)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 2

 1 CHIEF
DBBL
SIMULATION LAB

 J CHERVENAK
 2868 A WAY ST
 FORT BENNING GA 31905

 1 US ARMY SBCCOM
 NATICK SOLDIER CENTER
 AMSSB RSS MA (N)
 D TUCKER
 KANSAS ST
 NATICK MA 01760-5020

 1 US ARMY RESEARCH INST
 DR B KNERR
 12350 RSRCH PKY
 ORLANDO FL 32826-3276

 1 US ARMY RDEC
 J GROSSE
 12423 RSRCH PKY
 ORLANDO FL 32828

 1 TRAC MONTEREY
 DR N GOERGER
 PO BOX 8692
 MONTEREY CA 93943-0692

 1 WATERWAYS EXPRMNT STA
 CEERD ID E
 M PACE
 3909 HALLS FERRY RD
 VICKSBURG MS 39180

 1 VIRTUAL SIMULATION LAB
 J KRAEMER
 BLDG 2866 WAY ST
 FORT BENNING GA 31905

ABERDEEEN PROVING GROUND

 1 USAMSAA
AMXSY SA

 CSAD/A3D
 D FORDYCE

 1 DIR USARL
 AMSRL HR SB

 P CROWELL

